Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Buildings ; 13(5), 2023.
Article in English | Scopus | ID: covidwho-20245006

ABSTRACT

With frequent outbreaks of COVID-19, the rapid and effective construction of large-space buildings into Fangcang shelter hospitals has gradually become one of the effective means to control the epidemic. Reasonable design of the ventilation system of the Fangcang shelter hospital can optimize the indoor airflow organization, so that the internal environment can meet the comfort of patients and at the same time can effectively discharge pollutants, which is particularly important for the establishment of the Fangcang shelter hospital. In this paper, through the reconstruction of a large-space gymnasium, CFD software is used to simulate the living environment and pollutant emission efficiency of the reconstructed Fangcang shelter hospital in summer under different air supply temperatures, air supply heights and exhaust air volume parameters. The results show that when the air supply parameters are set to an air supply height of 4.5 m, an air supply temperature of 18 °C, and an exhaust air volume of a single bed of 150 m3/h, the thermal comfort can reach level I, and the ventilation efficiency for pollutants can reach 69.6%. In addition, the ventilation efficiency is 70.1% and 70.3% when the exhaust air volume of a single bed is continuously increased to 200 and 250 m3/h, which can no longer effectively improve the pollutant emission and will cause an uncomfortable blowing feeling to patients. © 2023 by the authors.

2.
16th International Symposium on Operational Research in Slovenia, SOR 2021 ; : 294-299, 2021.
Article in English | Scopus | ID: covidwho-1717641

ABSTRACT

In this paper, we compare emissions of major air polluters from 20 March to 20 April 2020 to the same period in 2019. Our study area covers major cities in Europe’s cleanest and most polluted countries. Results show that there is a statistically significant decrease in maximum daily values of NO2 emissions in almost all cities. The concentrations of other pollutants indicate that the closure measures cannot be related to statistically significant reductions. A noticing finding is that a statistically significant reduction in pollutants (except for SO2) is more frequent in cleaner cities. © 2021 Samo Drobne – Lidija Zadnik Stirn – Mirjana Kljajić Borštnar – Janez Povh – Janez Žerovnik

3.
Sustain Cities Soc ; 75: 103314, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1377836

ABSTRACT

Strict restrictions to halt the spread of COVID-19 provided an opportunity to quantify the contribution of different pollution agents. We analyze the concentrations of pollutants recorded in Rome during the lockdown periods for the containment of the spread of Covid 19, compared with those of other periods and years. We recorded a significant contribution attributable to heating systems powered by fuel. Thus, we propose the replacement of existing boilers for heating and drinking hot water (DHW) production systems, with air / water heat pumps, as an intervention to improve urban air quality. We analyze the replacement scenarios, within the entire residential building stock in the Municipality of Rome, in terms of emissions reduction, primary energy savings and reduced CO2 production. Results show significant reductions in concentrations. Reduction in primary energy consumption varies between 12% and 56% for various scenarios, different for outdoor temperatures and mix of electricity generation. The intervention on the urban scale can reduce air pollution on a long-term basis, implying significant reductions of polluting emissions in urban areas, and entailed reduced energy (and therefore environmental) costs, with a significant step towards sustainable cities.

4.
Huan Jing Ke Xue ; 42(7): 3099-3106, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: covidwho-1332912

ABSTRACT

This study analyzed the impacts of meteorological conditions and changes in air pollutant emissions on PM2.5 across the country during the first quarter of 2020 based on the WRF-CMAQ model. Results showed that the variations in meteorological conditions led to a national PM2.5 concentration decreased of 1.7% from 2020-01 to 2020-03, whereas it increased by 1.6% in January and decreased by 1.3% and 7.9% in February and March, respectively. The reduction of pollutants emissions led to a decrease of 14.1% in national PM2.5 concentration during the first quarter of 2020 and a decrease of 4.0%, 25.7%, and 15.0% in January, February, and March, respectively. Compared to the same period last year, the PM2.5 concentration measured in Wuhan City decreased more than in the entire country. This was caused by improved meteorological conditions and a higher reduction of pollutant emissions in Wuhan City. PM2.5 in Beijing increased annually before the epidemic outbreak and during the strict control period, mainly due to unfavorable meteorological conditions. However, the decrease in PM2.5 in Beijing compared to March 2019 was closely related to the substantial reduction of emissions. The measured PM2.5 in the "2+26" cities, the Fenwei Plain and the Yangtze River Delta (YRD) decreased during the first quarter of 2020, with the largest drop occurring in the Yangtze River Delta due to higher YRD emissions reductions. The meteorological conditions of "2+26" cities and Fenwei Plain were unfavorable before the epidemic outbreak and greatly improved during the strict control period, whereas the Yangtze River Delta had the most favorable meteorological conditions in March. The decrease in PM2.5 concentration caused by the reduction of pollutant emissions in the three key areas was highest during the strict control period.


Subject(s)
Air Pollutants , Air Pollution , Epidemics , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Cities , Environmental Monitoring , Meteorology , Particulate Matter/analysis
5.
Huan Jing Ke Xue ; 42(4): 1591-1599, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: covidwho-1143847

ABSTRACT

Based on the air pollution emission inventory technical methodology, this study conducted a quantitative analysis on the changes in major air pollutant emissions in Beijing-Tianjin-Hebei and its surrounding areas from the 'New Year Haze' in the autumn and winter of 2016-2017 to the 'Pandemic Haze' in the autumn and winter of 2019-2020. The contributions of the implementation of air pollution prevention and control policies and the COVID-19 pandemic to major air pollutant emission reductions were studied, and their impacts on the regional air quality under adverse meteorological conditions were simulated using an air quality model. The results showed that from the 'New Year Haze' in Dec 2016-Jan 2017 to the 'Pandemic Haze' in Jan-Feb 2020, the major air pollutant emissions in the region had dropped by approximately 50%, and the average concentration of PM2.5 was potentially reduced by more than 40% under adverse meteorological conditions. The most effective emission reduction measures included the clean heating project and raising the standards in key industrial sectors, such as the iron and steel industry, coal-fired boilers, and power plants, which contributed 67.1% and 53.4% of the emission reductions in SO2 and PM2.5, respectively. The COVID-19 pandemic predominantly affected the mobile sources and light industry, which contributed 71.9% and 68.2% of the emission reductions in NOx and VOCs, respectively. The implementation of air pollution prevention and control policies contributed substantially to the improvement of regional air quality, which effectively reduced the intensity and extent of the heavy pollution process under unfavorable meteorological conditions. The regional average PM2.5 concentration was reduced by 26%, and the number of days experiencing heavy pollution decreased by 44%. Due to the impacts of the COVID-19 pandemic, the average PM2.5 concentration in the region was reduced by an additional 24%, and the duration and extent of heavy pollution decreased even further.

6.
Atmos Environ (1994) ; 250: 118270, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1086773

ABSTRACT

Although the effects of meteorological factors on severe air pollution have been extensively investigated, quantitative decomposition of the contributions of meteorology and anthropogenic factors remains a big challenge. The novel coronavirus disease 2019 (COVID-19) pandemic affords a unique opportunity to test decomposition method. Based on a wind decomposition method, this study outlined an improved method to differentiate complex meteorological and anthropogenic effects. The improved method was then applied to investigate the cause of unanticipated haze pollution in China during the COVID-19 lockdown period. Results from the wind decomposition method show that weakened winds increased PM2.5 concentrations in the Beijing-Tianjin area and northeastern China (e.g., by 3.19 µg/m3 in Beijing). Using the improved decomposition method, we found that the combined meteorological effect (e.g., drastically elevated humidity levels and weakened airflow) substantially increased PM2.5 concentrations in northern China: the most substantial increases were in the Beijing-Tianjin-Hebei region (e.g., by 26.79 µg/m3 in Beijing). On excluding the meteorological effects, PM2.5 concentrations substantially decreased across China (e.g., by 21.84 µg/m3 in Beijing), evidencing that the strict restrictions on human activities indeed decreased PM2.5 concentrations. The unfavorable meteorological conditions, however, overwhelmed the beneficial effects of emission reduction, causing the severe haze pollution. These results indicate that the integrated meteorological effects should be considered to differentiate the meteorological and anthropogenic effects on severe air pollution.

SELECTION OF CITATIONS
SEARCH DETAIL